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 The theory of strain compatibility of the solid mechanics discipline was incomplete since St. 
Venant’s ‘strain formulation’ in 1876. We have addressed the compatibility conditions for both the 
continuum1 and the discrete system.2 This has lead to the formulation of the Integrated Force Method for 
finite element analysis3 and the Completed Beltrami-Michell’s formulation in elasticity.4  IFM is easily 
specialized to obtain the existing methods.5  The reverse course cannot be followed.  For example, the 
stiffness method cannot be specialized to obtain IFM because the stiffness method formulation is based 
only on the information contained in three quarters of the pie chart, see figure 1. The IFM variational 
functional yields the boundary compatibility conditions that were missed since 1876.6,7 The compatibility 
limitation while blocking the growth of the primal method caused a bifurcation into the stiffness method 
and the redundant force method as sketched in figure 1. The compatibility compliance by the stiffness 
method attempted through mesh refinementmay not be achieved for difficult problems. The classical 
force method with ‘cuts’ and redundancy is cumbersome.  A Dual Integrated Force Method with 
displacements as the primal variable has also been formulated. IFM and IFMD yield identical solutions. A 
stiffness method code with a small programming effort can be improved to reap many IFM benefits when 
implemented with the IFMD elements. 

A modest finite element code (IFM/Analyzers) based on the IFM theory has been developed. This 
code uses numerical integration but does not use reduced integration or bubble function techniques. For a 
set of standard test problems the IFM results were compared with the stiffness method solutions and the 
MSC/Nastran code in a controlled environment.7,8  For the problems IFM outperformed the existing 
methods, overshadowing the simplicity of the IFM elements. Superior IFM performance is attributed to 
simultaneous compliance of the equilibrium equation and compatibility condition. A method may be 
fallible but a utilization of the compatibility concept can never hurt. The additional information on 
compatibility condition has benefited analysis,7,8 structural design9 and optimization.10 

Mr. Bob Harder of MSC/Nastran organization wrote to us expressing reluctance to accept the high 
fidelity IFM solutions.11 He wrote:  

 
“ Authors …  make wrong statements about the accuracy of MSC/NASTRAN in the paper.”   
 
We re-solved all the examples again. The versions of MSC/Nastran software used were: 70.7.0 

Silicon graphics/IRIX64 6.5 (2001), 69.0 IBM/RISC System/6000 (1997), and MSC/Nastran 1982, 
Section 2.2 (1982, Ref. 12). 

 
No numerical inaccuracy was detected in any of the seven tables in the paper.5 The exercise 

reconfirmed IFM performance for static and frequency analysis. A report was sent to Mr. Harder.13 We 
did not receive a reply. 
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Dr. Halford conducted a peer-review on IFM and the response received is given reference 14. 
Under his guidance a website (http://sdwww.grc.nasa.gov/patnaik)15 is being developed. The site 
addresses solid mechanics problems of the strength of materials curriculum. A user can compare three 
methods (IFM, IFMD and the stiffness method) for internal force, reaction, displacement, and stress for 
modest problems that can be modeled by about 5000 equations. A numerical test-bed has been developed 
to validate the code. It contains the cantilever problem that was also solved earlier.7,8 This example uses 
the RC0405 IFM element with five force unknowns that support linear variation of normal stress (σx = c1 
+ c2y and σy = c3 + c4x) and constant state of shear stress (τ = c5).  The results obtained for this problem 
are given in the table and graphed in figure 2.  The earlier version of MSC/Nastran exhibited a residual 
error of 8.6 percent in the tip displacement of the beam (bottom insert in figure 2).  But the solution from 
the current version of the MSC/Nastran code is identical to the IFM results (top insert in figure 2). The tip 
displacement and the diagonal terms of the matrix for IFMD, two versions of MSC/Nastran code and the 
standard stiffness method are given in the table for a two-element model. The current version of 
MSC/Nastran code has now produced numbers that are identical to the IFM/IFMD solution.   
 
 
 

        

 An earlier version exibited 8.6 % residual error

Current version of MSC/Nastran exactly matches 
IFM

Number of elements, n

 
 
Figure 1.Compatibility barrier prevented the development of IFM         Figure 2.Solutions for a cantilever beam 
 
 

Solution to a two-element model 
 IFM/IFMD Stiffness Method MSC/Nastran, 1990 MSC/Nastran, 2001 

(Identical to IFM/IFMD) 

Tip displacement in 10– 3 in. 
 

– 1.1008 
(Timoshenko:– 1.152) 

0.2576 1.0055 – 1.1008 

 Normalized with 106 Normalized with respect to IFM/IFMD solution 

Diagonal coefficient of 
governing matrix  

(6.1) (16.6) (3.0)  ( 8.3) 
(3.0)  ( 8.3) (6.1) (16.6) 

(1.25) (1.03) (1.27) (1.04) 
(1.27) (1.04) (1.25) (1.03) 

(1.0) (1.02) (1.0) (1.01) 
(1.0) (1.01) (1.0) (1.02) 

(1.0)  (1.0) (1.0) (1.0)  
(1.0)  (1.0) (1.0) (1.0) 

 
 
Industry recognizes the importance of analysis but research on new methods is not central to its worry 
because it is profit driven. It indeed has built magnificent structures in the past from the Great Wall of 
China to the Leaning tower of Pisa without the benefit of analysis.  Industry will earn profit in the future 
even without investing in analysis methods. Industrial prosperity is directly linked to the economy of a 
society but has a superficially loose connection to the academic knowledge.  Academia and research 
institutions, which traditionally researched the analysis methods, are becoming eager users of codes 
developed by few software houses.  Because profit dictates the survival of the software business, it is 
unable to indulge in basic research. This conflict-in-interest stalemate situation can create a vacuum that 
may be very expensive to reverse, especially with the retirement of the experienced researchers. It is 
important to recognize that a solution to a solid mechanics problem is incorrect when it is compatibility 
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non-compliant. The researchers in the field must adjust existing solutions and generate new ones that 
comply with the new conditions. The premier academic and research institutions should endeavor to 
increase the basic knowledge in the field to avoid saturation and arrest the declining solid mechanics 
discipline.  The intent of this communication is to disseminate new knowledge on the compatibility 
concept to the structural mechanics community.  It is not directed as a criticism to any individual or 
institution. 
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APPENDIX A 
 

 RESPONSE TO MSC/NASTRAN 
 

1.0  MSC/NASTRAN INQUIRY TO AUTHORS 
 

Date: Tue, 16 Sep 1997 17:07:20 —0700 
From: rlh@macsch.com (Bob Harder) 
To: dale.a.hopkins@lerc.nasa.gov 
Subject: Problems with Journal Article 
Cc: tom.cully@plano.macsch.com, ron.dyer@plano.macsch.com, charley.wilson@plano.macsch. 

corn 
 

TO: Surya Patniak, Rula Coroneos and Dale Hopkins 
FROM: Bob Harder (MSC) 
DATE: August 28, 1997 
CC: Ron Dyer, Tom Cully, Charley Wilson 
SUBJ: Problems with Journal Article 

 
REF: DYNAMIC ANIMATION OF STRESS MODES VIA THE INTEGRATED FORCE METHOD OF STRUCTURAL 

ANALYSIS. By Surya N. Patniak, Rula M. Coroneos and Dale A. Hopkins. IJNME 
Vol. 40, pp. 2151—2168 (1997) 

 
The authors show how to animate stresses, but make wrong statements 

about the accuracy of MSC/NASTRAN in the paper. Such conclusions as 
“Only IFM/IFMD analysers produces accurate stresses. Stresses predicted 
by MSC/NASTRAN are too low” are not true. Here are some examples. 

 
1. The data in the tables is must be incorrect. How can the frequencies for their 
“stiffness” method agree precisely in every case in Tables III, IV, and V with 
MSC/NASTRAN? It looks like it may be a transcription error. Table III shows 
MSC/NASTRAN results for the vibration frequency of an isotropic cantilevered beam. 
Their models CB_Model_2 and CB_Model_3 should both become MSC/NASTRAN HEXA8 with 
three elements, so how is it possible that MSC/NASTRAN gives such different results 
for these models? The frequencies given for MSC/NASTRAN do not agree with those 
found by MSC. Table III (frequency/beam theory) should be corrected as follows: 
 

 Elements Result in paper MSC/NASTRAN 
   Model Mode 3 Model Mode 3 
  6 HEXA8 1.637 1.640 1.0065 1.0419 
  3 HEXA8 1.014 0.995 1.0221 1.2724 
 3 HEXA8 2.672 1.862  
 3 HEXA2O 1.041 1.091 1.0322 1.O1 
 6 HEXA2O not reported 1.0137 0.9860 
 

It is not clear that the frequency should converge to beam theory. There are some 
corrections to consider. Higher order beam theory has transverse shear flexibility 
and rotary inertia, both of which will predict lower frequencies. The fully 
constrained root (not beam theory compatible) gives an added constraint which will 
produce higher frequencies. 
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2. Table VII shows maximum vonMises stresses for a cantilever beam with a tip shear 
load. While MSC can not reproduce their numbers, I agree that their model will not 
get good answers. The reason is that they are using poor boundary conditions. In 
order to agree with beam theory, you must let a solid element model breathe at the 
constrained end. Using their coordinate system, you can constrain the x—
displacement, but the y— and z—displacements should be constrained only in an 
average sense. This was done at MSC using an RBE3 element. 

 
 vm stress Beam Theory: 720.0 
 vm stress MSC/NASTRAN reported: 355.9 
 vm stress MSC/NASTRAN mod BC: 718.7 
 vm stress IFM/IFMD analyser: 629.7 

 
I conclude that with proper boundary conditions the MSC/NASTRAN I-{EXA20 is better 
than the IFM/IFMD analyser. 

 
3. Their analysis of the static deflection results in Table VII is based upon 
simple (Euler) beam theory. A better target value is based upon beam theory 
including transverse shear flexibility (Timoshenko) 

 
 deflection Euler Beam Theory: 2.304e-3 
 deflection IFM/IFMD analyser: 2.270e-3 
 deflection 6 MSC/N HEXA2O, reported: 2.250e-3 
 deflection Timoshenko Beam Theory: 2.3165e-3 
 deflection 6 MSC/N HEXA20, mod BC: 2.315e-3 

 
Using their boundary conditions,we agree that MSC/NASTRAN yields 2.25e-3, however 
with the correct boundary conditions MSC/NASTRAN is closer than the IFM/IFMD 
analyser. 

 
 Bob Harder 
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2.0  HOPKINS RESPONSE TO MSC/NASTRAN 
 
X-Info: IDE / NASA Lewis Research Center 
X-Sender: smdale@popserve.lerc.nasa.gov 
X-Mailer: Windows Eudora Pro Version 3.0.1 (32) 
Date: Thu, 20 Nov 1997 10:09:12 -0500 
To: rlh@macsch.com (Bob Harder) 
From: Dale A Hopkins <Dale.A.Hopkins@lerc.nasa.gov> 
Subject: Re: Problems with Journal Article 
Cc: tom.cully@plano.macsch.com, ron.dyer@plano.macsch.com, 
        charley.wilson@plano.macsch.com 
 
At 05:07 PM 9/16/97 -0700, you (Bob Harder) wrote: 
TO:     Surya Patniak, Rula Coroneos and Dale Hopkins 
FROM:   Bob Harder (MSC) 
DATE:   August 28, 1997 
CC:     Ron Dyer, Tom Cully, Charley Wilson 
SUBJ:   Problems with Journal Article 
 
REF:    DYNAMIC ANIMATION OF STRESS MODES VIA THE INTEGRATED FORCE 
        METHOD OF STRUCTURAL ANALYSIS. By Surya N. Patniak, Rula M. 
        Coroneos and Dale A. Hopkins. IJNME Vol. 40, pp. 2151– 2168 (1997) 
 
...[snipped] 
 
TO: Bob Harder, MacNeal-Schwendler Corp. 
FROM: Dale Hopkins, NASA/Lewis Research Center 
CC: Ron Dyer, Tom Cully, Charley Wilson 
RE: Addendum to Journal Article IJNME 40:2151-2169 (1997) 
 
Dear Mr. Harder: 
 
Thank you for your earlier e-mail correspondence regarding the above-referenced journal article.  Attached to this e-mail is our 
reply in the form of a Technical Addendum which we will also submit to the publisher.  If you are unable to open the 
attachment, which is a Microsoft Word for Windows 95 (Version 7.0a) document, I would be happy to mail or FAX it to you.  
I hope you will give us the benefit of the doubt that it was not our intention to give a negative portrayal of the MSC/Nastran 
product.  In retrospect, I wish we had included the information contained in the Technical Addendum because I do feel it 
provides a more complete picture of the state-of-the-art and the proper place for our modest effort from an historical 
perspective on the development and evolution of finite element methods.  If you would like to discuss this further, please do 
not hesitate to contact me again by e-mail or by telephone at 216-433-3260. 
 
Sincerely, 

 

Dale Hopkins 

��������������������������������������������������������������������������������

'DOH $ +RSNLQV 3KRQH�������������

1$6$�/HZLV 5HVHDUFK &HQWHU )$;� ������������

����� %URRNSDUN 5G 06 ����

&OHYHODQG 2+ ���������� (�PDLO�'DOH�$�+RSNLQV#OHUF�QDVD�JRY

�������������������������������������������������������������������������������� 
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3.0  REPORT SUBMITTED TO MSC/NASTRAN 
 

 “Dynamic Animation of Stress Modes via the Integrated Force Method of Structural Analysis” 
IJNME 40:2151–2169 (1997) 

 
The three issues raised by Bob Harder of MacNeal-Schwendler Corp. are specifically addressed 
in the three sections:  Issue 1 - Typographical error in Table 3; Issue 2 - Results in Table 3; 
Issue 3 - Results in Table 7. 
 
Elements 
 
The elements available in the IFM/Analyzers code are standard elements with full integration 
schemes, i.e. with neither of the two advanced features available in MSC/Nastran elements:  1) 
reduced shear integration; nor 2) reduced shear integration with bubble function.  Therefore, in 
the journal article the IFM results were compared with MSC/Nastran results obtained using 
elements without the advanced features. 
 
We have now solved the problems with and without the advanced features of the MSC/Nastran 
elements.  For the 8-node MSC/Nastran elements, the results are labeled as: 
 

1. 8-node standard isoparametric (2x2x2 integration) 
2. 8-node standard isoparametric (3x3x3 integration) 
3. 8-node reduced shear (2x2x2 integration) 
4. 8-node reduced shear (3x3x3 integration) 
5. 8-node reduced shear with bubble function (2x2x2 integration) - MSC/Nastran default 

element 
 
The 8-node elements available in IFM/Analyzers (for the IFM and stiffness methods) use 2x2x2 
standard isoparametric integration.  These elements are comparable to the MSC/Nastran 
element labeled as 1 above. 
 
For the 20-node MSC/Nastran elements, the results are labeled as: 

 
a. 20-node standard isoparametric (2x2x2 integration) 
b. 20-node standard isoparametric (3x3x3 integration) 
c. 20-node reduced shear (2x2x2 integration) 
d. 20-node reduced shear (3x3x3 integration) - MSC/Nastran default element 

 
The 20-node elements available in IFM/Analyzers (for the IFM and stiffness methods) use 4x4x4 
and 3x3x3 standard isoparametric integration, respectively.  These elements are comparable to 
the MSC/Nastran element labeled as b above. 
 
Boundary conditions 
 
Although the IFM/Analyzers code does not currently have provisions for interpolation constraint 
elements, nor for multi-point constraints, we have introduced another boundary condition to 
allow the model to “breathe” at the constrained end.  This boundary condition, labeled as  



 

NASA/TM— 2002-211286 9 

“clamped”, is described as follows.  For the model with 20-node elements, the displacement u 
(along the beam axis) is suppressed for all eight boundary nodes.  The displacement  w (along 
the load direction) is specified to ensure symmetry about the y-axis in the yz-plane, by 
suppressing this component at nodes 13 and 14 as shown in Figure 1a.  This boundary 
condition allows the beam to breathe along the z-direction.  Likewise, the displacement v (in the 
y-direction) is specified to ensure symmetry about the z-axis in the yz-plane, by suppressing this 
component at nodes 7 and 9 as shown in Figure 1a.  This boundary condition allows the beam 
to breathe along the y-direction. 
 
For the model with 8-node elements, the clamped boundary has the displacement u suppressed 
for all four boundary nodes.  The displacement w is suppressed at nodes 1 and 2 as shown in 
Figure 1d.  This boundary condition allows the beam to breathe along the z-direction.  Likewise, 
the displacement v is suppressed at nodes 1 and 5 as shown in Figure 1d.  This boundary 
condition allows the beam to breathe along the y-direction.  The boundary condition used in the 
journal article, labeled as “rigid”, suppresses all three displacement components for all nodes at 
the boundary (see Figures 1b and 1e). 
 
At the tip of the beam, the 10 lb. load is distributed among the nodes of the models with 20-node 
and 8-node elements, as given in Figures 1c and 1f, respectively. 
 
The beam theory results for the cantilever beam are provided, for reference, as follows: 
 

• Maximum normal stress in x-direction is 720 psi 
• Tip displacement from Euler beam theory is 2.304x10–3 in. 
• Tip displacement from Timoshenko beam theory is 2.3165x10–3 in. 
• First frequency is 224.825 Hz 
• Third frequency is 1405.125 Hz 

 
Issue 1 - Typographical error in Table 3 
 
Although Table 3, as submitted to the journal and as published in a NASA Technical 
Memorandum (Ref. 38), was correct, the published journal article contained the following 
typographical error.  The first column, fourth row (associated with CB_Model_2) should have 
stated “Six/HX20_90” instead of “Three/HX08_90”.  We regret any confusion this may have 
caused. 
 
Issue 2 - Results in Table 3 
 
The frequency results for the problem with both three- and six-element models are given in 
expanded Table 3a and 3b.  Both rigid and clamped boundary conditions are considered.  The 
five 8-node elements of MSC/Nastran (1. - 5.) and the four 20-node elements of MSC/Nastran 
(a. - d.), as described earlier, are used along with 8- and 20-node IFM/IFMD and stiffness 
elements of IFM/Analyzers. 
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• Eight-node elements:  The MSC/Nastran results in Table 3 as published in the 
journal article are identical to the results obtained for MSC/Nastran 8-node element 1 
(standard isoparametric [2x2x2 integration]), which is comparable to the 
IFM/Analyzers 8-node elements.  Please compare column 4, rows 1, 2, 5, and 6 in the 
published article with the MSC/Nastran element 1 results, given in columns 1, 2, 5, 
and 6 in the expanded Table 3b. 

 
• Twenty-node elements:  The MSC/Nastran results in Table 3 as published in the 

journal article are identical to the results obtained for MSC/Nastran 20-node element b 
(standard isoparametric [3x3x3 integration]), which is comparable to the 
IFM/Analyzers 20-node elements.  Please compare column 4, rows 3, 4, 7, and 8 in 
the published article with MSC/Nastran element b results, columns 1, 2, 5, and 6 in 
the expanded Table 3a. 

 
• Frequencies:  The IFM/IFMD frequency results are in agreement with the results 

obtained with MSC/Nastran advanced elements 5 (8-node reduced shear with bubble 
function [2x2x2 integration], and d (20-node reduced shear [3x3x3 integration]). 

 
Issue 3 - Results in Table 7 
 
The stress and displacement results for the problem with both three- and six-element models 
are given in an expanded Table 7.  Both rigid and clamped boundary conditions are considered.  
The four 20-node elements of MSC/Nastran (a. - d.), as described earlier, are used along with 
the 20-node elements of IFM/Analyzers. 
 

• Stress Results:  The normal stress in the x-direction calculated using the 
MSC/Nastran element b (standard isoparametric [3x3x3 integration]), which is 
comparable to the IFM/Analyzers elements, converged to 396.01 psi. for the 6-
element model with clamped boundary conditions.  For the same conditions, the 
IFM/IFMD element produced a normal stress of 715.77 psi, while beam theory gives 
720 psi.  The results with the default (improved) MSC/Nastran element (with reduced 
shear [3x3x3 integration]) and the IFM/IFMD element agree with beam theory results 
with minor deviations. 

 
• Displacement Results:  For the 6-element model with clamped boundary conditions, 

the displacement results agree with Timoshenko beam theory as follows: 
 

• 1.0000 for Timoshenko beam theory 
• 0.9869 for IFM/IFMD 
• 0.9836 for MSC/Nastran element b 
• 1.0006 for MSC/Nastran element d (default element) 
• 0.9994 for MSC/Nastran element d with the RE3 constraint (the element 

referenced in the correspondence from MSC) 
 

• Boundary Conditions:  The improvement in displacement results between the rigid, 
clamped, and MSC’s RE3 constraint boundary conditions for the 6-element, 20-node 
per element, model are as follows: 
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• 2.315x10-3 (RE3, MSC/Nastran, element d [?]) 
• 2.316x10-3 (clamped, IFM/IFMD) 
• 2.270x10-3 (rigid, IFM/IFMD) 
• 2.251x10-3 (rigid, MSC/Nastran, element d.) 
• 2.3165x10-3 (Timoshenko beam theory) 
 

  The largest discrepancies (with beam theory) in displacements for the four cases 
listed above occurred for rigid boundary conditions: 

 
(i) 2.83% for MSC/Nastran 
(ii) 2.01% for IFM/IFMD 

 
Summary 
 
The results for stresses, displacements, and frequencies generated using standard IFM/IFMD 
elements are in agreement with results obtained when advanced MSC/Nastran elements (with 
reduced shear for the 20-node element, and reduced shear with bubble function for the 8-node 
element) are used.  In the original journal article, comparisons were made between comparable 
elements of the force and displacement methods (for 8-node, element 1; for 20-node, 
element b).
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20-Node Element      8-Node Element 
 
 
 
  z         z 
 
5              17         6      5                           6 
 
 
13   14                   
       y 
 
 
1 9 2      1  2 
 
u = 0 at all 8 nodes      u = 0 at all 4 nodes 
v = 0 at nodes 9 & 17      v = 0 at nodes 1 & 5y 
w = 0 at nodes 13 & 14      w = 0 at nodes 1 & 2 
 
(a) Clamped boundary condition     (d) Clamped boundary condition 
 
 
  z         z 
 
5  17 6      5  6 
 
 
 13   14                        
                  y  
        
 
1 9 2      1  2 
 
u = v = w = 0 at all 8 nodes     u = v = w = 0 at all 4 nodes 
 
(b) Rigid boundary condition     (e) Rigid boundary condition 
 
     z         z  
       
   7     19         8      7  8 
 
 
     
15      16      y         y 
 
 
 3  11   4                  3  4 
 
 
Load of (-7/6) lb at nodes 3,4,7, and 8    Load of 2.5 lb at nodes 3, 4, 7 and 8 
Load of 4 lb at nodes 15 & 16      
Load of 10/3 lb at nodes 11 & 19 
 
(c) Load distribution      (f) Load distribution 
 
 
 
Figure A1.Eight-node and twenty-node CHEXA elements with boundary conditions and load distributions. 
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Fidelity of the Integrated Force Method Solution
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The theory of strain compatibility of the solid mechanics discipline was incomplete since St. Venant’s ‘strain formula-
tion’ in 1876. We have addressed the compatibility condition both in the continuum and the discrete system. This has
lead to the formulation of the Integrated Force Method. A dual Integrated Force Method with displacement as the primal
variable has also been formulated. A modest finite element code (IFM/Analyzers) based on the IFM theory has been
developed. For a set of standard test problems the IFM results were compared with the stiffness method solutions and the
MSC/Nastran code. For the problems IFM outperformed the existing methods. Superior IFM performance is attributed
to simultaneous compliance of equilibrium equation and compatibility condition. MSC/Nastran organization expressed
reluctance to accept the high fidelity IFM solutions. This report discusses the solutions to the examples. No inaccuracy
was detected in the IFM solutions. A stiffness method code with a small programming effort can be improved to reap the
many IFM benefits when implemented with the IFMD elements. Dr. Halford conducted a peer-review on the Integrated
Force Method. Reviewers’ response is included.


